Unstructured Mesh Computations:
Effects of Ordering Strategies,
Programming Paradigms, and Architectural Platforms

Leonid Oliker
loliker@lbl.gov
www.nersc.gov/ oliker
NERSC, Lawrence Berkeley National Laboratory

Overview

e Generally believed that unstructured grid techniques will constitute a
significant fraction of future high performance computing

e Unstructured meshes used to represent complex (evolving) geometries
e Underlying matrix is assembled and used to solve set of PDE’s

e Parallel computing required to solve large sparse systems

e Leading parallel systems and programming paradigms

— T3E/MPI, Origin2000/OpenMP, Tera MTA/MT

e Partitioning strategy is required to decompose unstructured domain onto
parallel system

— Multilevel (MeTiS), Linearization (RCM, SAW), Graph Coloring
e Fxamples: Conjugate Gradient (CG) performance based on SPMV

e Unstructured mesh adaptation: dynamically adaptive algorithm

W ERSC

Graph Partitioning Strategies: MeTiS

e Most popular multilevel partitioners, goal:

— Balance computational workload

— Minimize edge cuts (interprocessor communication)

e Collapses vertices and edges, using heavy edge matching scheme, applies
ereedy algorithm to coarsest graph, uncoarsens it back using greedy graph
erowing + Kenighan-Lin.

M ultllevel partition ing algor thma compute a partition
atthe oA raest qara ﬂ___._ ard then refine the solution!

Jm
-~

Init@l Partitionl ng Prase

Traditional partitiening algorthma compute
a partition directly on the orginal grap bl

a

W ERSC

Linearization Strategies: Reverse Cuthill-McKee (RCM)

e The bandwidth, or profile, of the matrix has a significant impact of the
efliciency of linear systems and eigensolvers

e RCM is a geometry based algorithm which generates a permutation such

that the nonzero entries are close to the diagonal.

e Good preordering for LU or Cholesky factorization (reduces fill).

e Also improves cache performance, but does not explicitly reduce edge-cuts.

e Can be used as partitioning strategy by assigning each of P segments of the
RCM enumeration to a processor.

e [Tom vertex of min degree, generates a level structure by breadth-first search
and orders the vertices by decreasing distance from the original vertex

U-
10t

201 .

S0t

4071

507

+1a)
0

20

40

8]

10}

20r

S0t

40r

50F

B0

1 l...l

20

W ERSC

Linearization Strategies: Self-Avoiding Walks (SAW)

e SAW is mesh based technique similar to space-filling curves
e T'wo consecutive triangles in the SAW share an edge or vertex (no jumps)
e SAW visits each triangle exactly once, entering/exiting over an edge or vertex

e SAW used to improve parallel efficiency related to locality (cache reuse) and
load balancing, but does not explicitly address edge cuts (interproc. comm.)

e SAW amenable to hierarchical coarsening and refinement

W ERSC

Sparse Matrix Vector Multiply and Conjugate Gradient

e SPMYV one of most heavily used kernels in large-scale numerical simulations

e To perform a SPMV., y « Az, assume that nonzeros of matrix A are stored
in the Compressed Row Storage (CRS) format

e Dense vector x is stored sequentially in memory with unit stride. Various
numbering of the mesh elements/vertices result in different nonzero patterns
of A, which in turn cause different access patterns for the entries of x.

e The Conjugate Gradient (CG) algorithm is the oldest and best-known
Krylov subspace method used to solve the linear system Ax = b. The
method starts from an initial guess of the vector z. It then successively
generates approximate solutions in the Krylov subspace, and search
directions used in updating the approximate solution and residual.

e SPMV usually accounts for most of the flops within a CG iteration.

W ERSC

Sparse Matrix Vector Multiply and Conjugate Gradient

Compute rg = pg = b — Az for some initial guess x
for y = 0,1,..., until convergence
aj = (rj,rj)/(Apj p;)
Tj+l = L+ Q;p;
ril = 1j = QAp;
B = (rjz1rjen)/(rj.r5)
Pj+1 = rjt1 + Gip;
endfor
e [ach iteration of CG involves one SPMV for Ap;, three vector updates
(AXPY) for z;41, rj11, and pj11, and three inner products (DOT) for the

update scalars a;; and 3;

e For a symmetric and positive definite linear system, these conditions imply
that the distance between the approximate solution and the true solution is
minimized

e Suppose the matrix A is of order n and has nnz nonzeros. Then, one SPMV
involves O(nnz) floating-point operations, while AXPY and DOT involve
only O(n) floating-point operations. Thus, for many practical matrices,
SPMYV dominates the other two operations.

Test Problem

e 2D Delaunay triangulation of letter “A” generated by Triangle package.
e Contains 661,054 vertices and 1,313

e Underlying matrix assembled by assigning random value in (0, 1) to each
(¢, 7) entry corresponding to the vertex pair (v;, v;), where
1 < distance(v;,v;) < 3. All other entries set to 0

099 triangles

))

e Diagonal set to 40, making it diagonally dominant (positive definite)

e ['inal matrix has approx 39 entries per row and 25,753,034 nonzeros.

AT = o AT, o}
= T R T P

Fi e p AR e e 5 A P 5

W ERSC

Distributed Memory Implementation

e Fach processor has its own local memory that only it can directly access.

e To access the memory of another proc. a copy of the desired data must be
sent across the network using message passing (MPI or PVM)

e To run program on these systems, user must decide how the data should be
distributed (or redistributed) and organize communication structure

e Allows user to design efficient code at cost of high code complexity

e Parallel CG used calls special sparse linear library (Aztec)

o Matrix A is partitioned into blocks of rows and each block assigned to proc.
e Associated component vectors x and b are distributed accordingly

e Communication may be needed to transter some components of

e AXPY: only local computation, DOT: local sum followed by global reduction
e T3E: 450 MHz Dec Alpha processor (900 Mflop peak theoretical), 96KB

secondary cache, interconnected through 3D torus.

W ERSC

Distributed Memory: Locality and Communication Statistics

Avg. Cache Misses (10°) Avg. Communication (10° bytes)

P | ORIG | METIS | RCM | SAW | ORIG |[METIS| RCM | SAW
813.6842 | 3.0340 |3.7490 | 2.0042 | 3.2275 | 0.0107 1 0.0308 | 0.0488
16 2.0072 | 1.3305 |1.9049 1 0.9706 | 2.3643 | 0.0108 |0.0315| 0.0362
32 1.0597 | 0.6576 | 1.0172]0.5073 | 1.4918| 0.0092 | 0.0316 | 0.0302
64 | 0.6011 | 0.3581 |0.5150 | 0.2900 | 0.8285| 0.0079 |0.0316 | 0.0229

e Results: ORIG ordering has large edge cut (interprocessor comm), and poor
locality (high number of cache misses)

e MeTiS minimizes edge cuts, while SAW minimizes cache misses

W ERSC

Distributed Memory: Runtime of SPMV and CG

ORIG METTIS RCM SAW
P |SPMV| CG |SPMV| CG |SPMV| CG |SPMV | CG
8 0.5622 | 8.6519 | 0.4758 | 7.6617 | 0.3812 | 6.1853 | 0.1708 | 2.9158
16 | 0.3252 15.0929 | 0.2682 | 2.9092 | 0.1927 | 3.1979 | 0.0861 | 1.4912
32 0.1990 | 3.1667 | 0.0870 | 1.4677 | 0.0951 | 1.6615 | 0.0442 | 0.7948
64 | 0.1191 | 1.9287 | 0.0559 | 0.9614 | 0.0451 | 0.8816 | 0.0283 | 0.4616

e Ordering/Partitioning is required to achieve performance and scalability

e For this combination of applications and architectures, improving cache reuse

can be more important than reducing interprocessor communication

e Adaptivity = Repartitioning (Reordering) and Remapping

W ERSC

Distributed-Shared Memory System

e Origin2000: SMP of nodes each contains two 250 MHz R10000 and local mem

e Hardware makes all memory equally accessible from software standpoint, by
sending memory requests through routers on nodes

e Access time to memory is nonuniform (depending on # of hops)

e Topology of the interconnection is hypercube (max log(p) hops)

e [Lach proc has large 4MDB cache, where only it can fetch and store data
e If proc access data not in cache, delay while a copy is fetched

e When proc modifies word , all other copies of that cache line are invalidated

zT z‘ M z‘

4 processor
eyetem z‘

B processor
systerm

16 processor
system

W ERSC

Distributed-Shared Memory Implementation

e Use OpenMP style directives to parallelize loops - less effort than MPI
e Two implementation approaches are taken:

— SHMEM: naively assumes Origin2000 is flat shared-mem machine. Arrays
not explicitly distributed, non-local data handled by cache-coherence

— CC-NUMA: addresses underlying distributed-memory by performing data
distribution

e The computational kernels of both SHMEM and CC-NUMA are identical
e Fach processor assigned equal number of rows in the matrix (block)

e No explicit synchronization since no concurrent writes

e GGlobal reduction required for DOT

fERSC

Distributed-Shared Memory Results

SHMEM
ORIG RCM SAW
P |SPMV | CG |SPMV | CG |SPMV | CG
1 2.224 | 46.911 | 1.489 |37.183 | 1.460 |36.791
2| 1.249 |28.055 | 0.852 |21.867 | 0.831 |21.772
41 1.425 |30.637 | 0.935 |25.350 | 0915 |24.751
8
6

0.922 116.836 | 0.572 |14.431 | 0.572 |14.121
1.047 116.348 | 0.635 |15.516 | 0.645 |15.548
32| 1.072 |16.653 | 0.664 |15.350 | 0.641 | 15.423
64 | 0.747 110.809 | 0.323 | 7.782| 0.324 | 8.450

CC-NUMA MPI

ORIG RCM SAW SAW

P |SPMV | CG |SPMV | CG |SPMV | CG CG

1 2.224 | 46.911 | 1.489 |37.183 | 1.460 |36.791

2| 1.218 | 27.053 | 0.851 |21.454 | 0.829 |21.229 | 23.145
41 0.879 |17.608 | 0.421 |10.651 | 0.410 |10.593 | 7.880
81 0.535 | 9.824 | 0.220 | 5.575| 0.216 | 5.516 | 3.815
16 | 0.326 | 6.205 | 0.115 | 2.845| 0.113 | 2.872 | 1.926
32| 0.197 | 3.584 | 0.061 | 1.548 | 0.060 | 1.514 | 1.075
64 || 0.118 | 2.365 | 0.028 | 0.885 | 0.026 | 0.848 | 0.905

W ERSC

Distributed-Shared Memory Results

e CC-NUMA shows significant performance gain over SHMEM, since
Origin2000 is a distributed memory machine, it should be treated as such.

e Within CC-NUMA, RCM and SAW reduce runtime compared to ORIG.
Indicates that intelligent ordering is necessary to achieve performance and
scalability

o Little difference between RCM and SAW, probably due to large cache (need
to experiment with larger mesh)

e CC-NUMA and MPI runtimes are very similar for SAW ordering, even
though programming methodologies are quite different.

e Results indicate that for this class of applications, it is possible to achieve
message passing performance using shared memory constructs, through
careful data ordering and distribution

e Adaptivity = Repartitioning (Reordering) and Remapping

W ERSC

Tera MTA Multithreaded Architecture

e 255 MHz Tera uses MTA to cover latencies and keep processor saturated

e Randomized memory mapping - data layout is impossible (3D torus)

e Near uniform data access from any processor to any memory location

e No data caches, MT is used to tolerate latency (100-150 cycles per word)

e Flach proc has about 100 streams hardware (including 32 registers and PC)

e Processor makes context switch on each cycle, choosing the next instruction
from one streams ready to execute.

e A stream can execute an instruction only once every 21 clocks, even if no
instructions reference memory

e Synchronization between threads is accomplished using full/empty bits in
memory, allowing for fine-grained threads

e [ixplicit load balancing not required since dynamic scheduling of work to
threads can keep processor saturated

e For MT code: no difference between uni and multiprocessor parallelism

Tera MTA Implementation

e MT implementation is trivial - only compiler directives required

e Special assertions used to indicate no loop carried dependencies

e Compiler was then able to parallelize loop segments

e Load balancing handled by OS which dynamically assigns rows to threads

e Other than reduction for DOT, no special synchronization constructs are
required since no possible race conditions in CG

e No special ordering is required (or possible) to achieve parallel performance

Tera MTA Results

ORIG
P||SPMV | CG
L] 0.378 9.86
2| 0.189 |5.02
41 0.095 |2.53
8|1 0.061 |1.35

e Results on 60 streams per processor
e Both SPMV and CG show high scalability (over 90%)
e Shows enough ILP in MT CG to tolerate high overhead of memory access

e 8 proc Tera faster than 32 proc O2K and 16 Proc T3E - with no special
ordering

e Only 8 procs available, will scaling continue as P increases?

e Adaptivity = No extra work would be required to maintain performance

Summary

e ['xamined 3 different parallel implementations of CG using three leading
programming paradigms and architectures

e MPI: Most complicated implementation, compared graph partitioning and
linearization strategies

e For this class of applications traditional graph partitioners which focus on
minimizing edge cuts are not necessarily as good as locality algorithms which
improve cache reuse

e Shared mem CG on O2K: ordering algorithms greatly improve performance

e [t is possible to achieve message passing performance using shared mem
constructs through careful data ordering and distribution

e Tera MTA was easiest to program and results show that special ordering
and /or partitioning schemes are not required to obtain high efficiency and
scalability.

Future work

e Create a hybrid (OpenMP/MPI) implementation on new NERSC and SDSC
SP system

e [ixamine effects of first partitioning mesh with MeTiS followed by performing
SAW on each subdomain (good match for hybrid system?)

e [valuate parallel Jacobi-Davidson eigensolver (SPMV kernel)

o [ixtend SAW algorithm to 3D and modity it to efliciently handle adaptivity
in parallel

